Rabu, 05 Desember 2012

KATA MUTIARA

Kata Mutiara

Cinta itu seperti sedekah, yang kita berikan adalah yang kita terima.

Orang yang mendermakan sebagian dari hartanya, akan dihadiahi harta tambahan yang lebih luas daripada hanya uang dan benda yang diberikan kepada sesamanya yang membutuhkan.

salah satu ciri orang pandai adalah mampu memanfaatkan mimpinya menjadi hal yg lebih berguna untuk orang lain
http://mp3indodownload.blogspot.com
Orang yang paling aku sukai adalah dia yang menunjukkan kesalahanku

Dalam kepala kaum wanita ada kekurangan, tetapi dalam hati mereka ada kelebihan

Di puji jauh lebih bahaya dibanding di caci, karena pujian akan menimbulkan kemunafikan

Di balik setiap pria sukses selalu ada wanita yang luar

Sahabat sejati ibarat dua buah tangan, yang satu membersihkan yang lainnya.

Janganlah hidup dengan membenci pekerjaan yang hasilnya Anda gunakan untuk membiayai kehidupan Anda.


Bagaimana mungkin Anda akan berbahagia membagi kehidupan Anda dalam dua belahan yang saling tidak cocok.

Tujuan dari kesibukan adalah memampukan kita untuk bebas dari kesibukan yang tidak kita sukai.

Tapi, kesibukan pada kegiatan dan pekerjaan yang kita cintai, akan terasa seindah liburan

Kata Mutiara

Jangan menyerah atas hal yg kamu anggap benar meskipun terlihat mustahil. Selama ada kemauan, Tuhan kan berikan jalan.

Cinta sejati tak datang begitu saja. Banyak proses yg harus dilalui bersama, menderita, menangis, dan tertawa bersama.

Kebahagiaan terbesar dalam hidup ini adalah keyakinan bahwa kita dicintai oleh orang yang kita cintai

Mungkin km tak menyadarinya, tp hal plg kecil yg km lakukan dapat membawa dampak sangat besar bagi org lain

Jangan membandingkan dirimu dengan orang lain. Iri hati hanya membuat jiwamu gelisah. Jadi diri sendiri

Merindukan ssorg bkn berarti membutuhkannya kembali dlm hidupmu. "Kerinduan" adl proses "kemajuan". Terus maju!

Dari hal-hal baik, aku belajar mengucap syukur. Dari hal-hal buruk, aku belajar menjadi kuat.

Jangan takut mencoba, kesalahan adalah guru terbaik jika kamu jujur mengakuinya dan mau belajar darinya.

Jangan pernah merasa dirimu tak cukup baik, karena bagi seseorang, kamu adalah yang terbaik.

Dalam cinta, jika kamu mencarinya, dia akan menghindarimu, tapi jika kamu jadi orang yg pantas dicinta, dia akan mengelilingimu.

Dalam hidup, persiapkan dirimu sebaik mungkin, dan daripada menunggu kesempatan datang, lebih baik kamu menciptakannya.

Waktu terus berjalan, belajarlah dari masa lalu, bersiaplah tuk masa depan, berikanlah yg terbaik untuk hari ini.

Kata Mutiara

Hal yg sangat kecil dapat menyebabkan masalah yg sangat besar. Jangan pernah meremehkan hal-hal kecil

Saat membicarakan orang lain Anda boleh saja menambahkan bumbu, tapi pastikan bumbu yg baik.

Terkadang, kesulitan harus kamu rasakan terlebih dulu sebelum kebahagiaan yang sempurna datang kepadamu.

Jangan mengeluhkan hal-hal buruk yg datang dalam hidupmu. Tuhan tak pernah memberikannya, kamulah yg membiarkannya dating.

Jangan pernah menyerah jika kamu masih ingin mencoba. Jangan biarkan penyesalan datang karena kamu selangkah lagi tuk menang.

Jangan biarkan orang lain menghalangimu tuk mengejar impianmu. Tetap berjuang, dan percayalah, semua akan indah pada waktunya.

Doaku hari ini: Tuhan, jagalah hatiku agar aku bisa menyayangi. Semoga aku bisa menolong mereka yg membutuhkan aku.

Setiap manusia pasti pernah berbuat salah, namun selama kamu mau melepaskan masa lalu, kamu akan punya masa depan yang cerah.

Masalah terbesar wanita adl mengingat terlalu banyak, sdgkn masalah terbesar pria adl melupakan terlalu cepat.

Dlm cinta, jgn berdusta hanya karena kamu tak ingin dia terluka. Karena ketika dia temukan kebenaran, dia akan lebih menderita.

Suatu hubungan berakhir, karena salah satu hati terlalu sedikit mencintai, dan atau terlalu banyak

Jadi dirimu sendiri. Org akan menyukaimu apa adanya. Meski ada yg membenci karena alasan yg sama, tak berarti kamu hrs berubah.

Mereka tak peduli dari mana kamu memulainya. Mereka melihat dari bagaimana caramu mengakhirinya.

Kata Mutiara

Mencintai seseorang berarti menjadikannya bagian dari dirimu. Itu sebabnya akan terasa sakit saat kehilangannya.

Cinta tidak hanya tentang: "Aku sangat beruntung memilikimu", tapi juga: "Kau sangat beruntung memilikiku".

Kadang tak peduli betapa besar kamu mencintai seseorang, kamu harus melepasnya. Dia yg selalu di hatimu tapi tak di kehidupanmu.

Jika seseorang yg istimewa di hatimu tak bisa mencintaimu ketika kamu menjadi dirimu sendiri, maka dia tidak istimewa

Jika kamu hanya mau bahagia ketika semua masalahmu selesai, kamu tidak akan pernah bahagia.

Cinta itu bukan tentang berapa banyak satu hari romantis yang kita lewati bersama, tapi tentang kualitas dari setiap hari-hari romantis kita bersamanya

Merindukan seseorg tidak menyakitkan. Yang menyakitkan adalah jika kita merindukan seseorg yang tidak merindukan kita.

Cinta mengajarkan kita untuk berbahagia untuk cinta, bukan bercinta untuk bahagia.

Tak ada yang sempurna, namun cinta mampu menyatukan dua insan yang tak sempurna untuk membentuk sesuatu yang sempurna.

Hanya karena ada senyum di wajah, tak berarti seseorang bahagia. Terkadang itu hanya berarti dia cukup kuat mengatasi segalanya.

Senin, 03 Desember 2012

KALOR

Pengertian Kalor
Kalor didefinisikan sebagai energi panas yang dimiliki oleh suatu zat. Secara umum untuk mendeteksi adanya kalor yang dimiliki oleh suatu benda yaitu dengan mengukur suhu benda tersebut. Jika suhunya tinggi maka kalor yang dikandung oleh benda sangat besar, begitu juga sebaliknya jika suhunya rendah maka kalor yang dikandung sedikit.
Dari hasil percobaan yang sering dilakukan besar kecilnya kalor yang dibutuhkan suatu benda(zat) bergantung pada 3 faktor
  1. massa zat
  2. jenis zat (kalor jenis)
  3. perubahan suhu
Sehingga secara matematis dapat dirumuskan :
Q = m.c.(t2 – t1)
Dimana :
Q adalah kalor yang dibutuhkan (J)
m adalah massa benda (kg)
c adalah kalor jenis (J/kgC)
(t2-t1) adalah perubahan suhu (C)
Kalor dapat dibagi menjadi 2 jenis
  • Kalor yang digunakan untuk menaikkan suhu
  • Kalor yang digunakan untuk mengubah wujud (kalor laten), persamaan yang digunakan dalam kalor laten ada dua macam Q = m.U dan Q = m.L. Dengan U adalah kalor uap (J/kg) dan L adalah kalor lebur (J/kg)
Dalam pembahasan kalor ada dua kosep yang hampir sama tetapi berbeda yaitu kapasitas kalor (H) dan kalor jenis (c)
Kapasitas kalor adalah banyaknya kalor yang diperlukan untuk menaikkan suhu benda sebesar 1 derajat celcius.
H = Q/(t2-t1)
Kalor jenis adalah banyaknya kalor yang dibutuhkan untuk menaikkan suhu 1 kg zat sebesar 1 derajat celcius. Alat yang digunakan untuk menentukan besar kalor jenis adalah kalorimeter.
c = Q/m.(t2-t1)
Bila kedua persamaan tersebut dihubungkan maka terbentuk persamaan baru
H = m.c
Analisis grafik perubahan wujud pada es yang dipanaskan sampai menjadi uap. Dalam grafik ini dapat dilihat semua persamaan kalor digunakan.
Grafik Perubahan Wujud Es
Keterangan :
Pada Q1 es mendapat kalor dan digunakan menaikkan suhu es, setelah suhu sampai pada 0 C kalor yang diterima digunakan untuk melebur (Q2), setelah semua menjadi air barulah terjadi kenaikan suhu air (Q3), setelah suhunya mencapai suhu 100 C maka kalor yang diterima digunakan untuk berubah wujud menjadi uap (Q4), kemudian setelah berubah menjadi uap semua maka akan kembali terjadi kenaikan suhu kembali (Q5)
Untuk mencoba kemampuan silakan kkerjakan latihan soal dengan cara klik disini.
Hubungan antara kalor dengan energi listrik
Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.
Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.
W = Q
Untuk menghitung energi listrik digunakan persamaan sebagai berikut :
W = P.t
Keterangan :
W adalah energi listrik (J)
P adalah daya listrik (W)
t adalah waktu yang diperlukan (s)
Bila rumus kalor yang digunakan adalah Q = m.c.(t2 – t1) maka diperoleh persamaan ;
P.t = m.c.(t2 – t1)
Yang perlu diperhatikan adalah rumus Q disini dapat berubah-ubah sesuai dengan soal.
Asas Black
Menurut asas Black apabila ada dua benda yang suhunya berbeda kemudian disatukan atau dicampur maka akan terjadi aliran kalor dari benda yang bersuhu tinggi menuju benda yang bersuhu rendah. Aliran ini akan berhenti sampai terjadi keseimbangan termal (suhu kedua benda sama). Secara matematis dapat dirumuskan :
Q lepas = Q terima
Yang melepas kalor adalah benda yang suhunya tinggi dan yang menerima kalor adalah benda yang bersuhu rendah. Bila persamaan tersebut dijabarkan maka akan diperoleh :
Q lepas = Q terima
m1.c1.(t1 – ta) = m2.c2.(ta-t2)
Catatan yang harus selalu diingat jika menggunakan asasa Black adalah pada benda yang bersuhu tinggi digunakan (t1 – ta) dan untuk benda yang bersuhu rendah digunakan (ta-t2). Dan rumus kalor yang digunakan tidak selalu yang ada diatas bergantung pada soal yang dikerjakan.


Kalor jenis

Rumus:
Q=m\times c \times\Delta\! t
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)
Untuk mencari kalor jenis, rumusnya adalah:
\!c=\frac{Q}{\!m\times\Delta\!t}
Untuk mencari massa zat, rumusnya adalah:
\!m=\frac{Q}{\!c\times\Delta\!t}

Kapasitas kalor

Kapasitas kalor adalah banyaknya kalor yang dibutuhkan oleh benda untuk menaikkan suhunya 1°C.
Rumus kapasitas kalor:
\!H=\frac{Q}{\Delta\!t}

\!H=\frac{\!m\times\!c\times\Delta\!t}{\Delta\!t}

\!H=\!m\times\!c
dengan syarat:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!H = Kapasitas kalor (Joule/°C)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)
contoh soal: sebuah zat dipanaskan dari suhu 10°C menjadi 35°C. Kalor yang dikeluarkan adalah 5000 Joule. Jika masa zat adalah 20 kg. Berapakah kalor jenis dan kapasitas kalor zat tersebut? Jawab = Diketahui=
          t1 =10°C
          t2 =35°C
          Q  =5000 J
          m  =20 kg
Ditanya = b. Kapasitas kalor (H)
           a. kalor jenis (c)
           delta t = t2-t1
                  = 35°-10°
                  = 25°
        c  = Q:(m*delta t)
        c  = 5000:(20*25)
        c  = 5000: 500
        c  = 10 J/kg C°
 H = m × c
   = 20kg × 10 J/kg C°
   = 200 J/ C°

Kalor lebur

Rumus:
\!Q=\!m\times\!L
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!L = Kalor lebur zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)

Kalor uap

Rumus:
\!Q=\!m\times\!U
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!U = Kalor uap zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)
Contoh Soal :
Berapa energi kalor yang diperlukan untuk menguapkan 5 Kg air pada titik didihnya, jika kalor uap 2.260.000 Joule/Kilogram ?
Jawab :
Diketahui  : m = 5 Kg
             U = 2.260.000 J/Kg

Ditanyakan : Q =..... ?

Jawab Q = m x U
        = 5 Kg x 2.260.000 J/Kg
        = 11.300.000 J
        = 11,3 x 106 J


Asas Black

Rumus:
\!Q_{terima}=\!Q_{lepas} Asas Black : Jumlah kalor yang diterima sama dengan jumlah kalor yang dilepas..
About these ads

Sabtu, 24 November 2012

HUKUM ARCHEMEDES

Hukum Archimedes menyatakan sebagai berikut, Sebuah benda yang tercelup sebagian atau seluruhnya ke dalam zat cair akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair yang dipindahkannya.
Sebuah benda yang tenggelam seluruhnya atau sebagian dalam suatu fluida akan mendapatkan gaya angkat ke atas yang sama besar dengan berat fluida fluida yang dipindahkan. Besarnya gaya ke atas menurut Hukum Archimedes ditulis dalam persamaan :
Fa = ρ v g
Keterangan :
Fa = gaya ke atas (N)
V = volume benda yang tercelup (m3)
ρ = massa jenis zat cair (kg/m3)
g = percepatan gravitasi (N/kg)
Hukum ini juga bukan suatu hukum fundamental karena dapat diturunkan dari hukum newton juga.
- Bila gaya archimedes sama dengan gaya berat W maka resultan gaya =0 dan benda
melayang .
- Bila FA>W maka benda akan terdorong keatas akan melayang
- Bila FA<W maka benda akan terdorong kebawah dan tenggelam
Jika rapat massa fluida lebih kecil daripada rapat massa balok maka agar balok berada dalam keadaan seimbang,volume zat cair yang dipindahkan harus lebih kecil dari pada volume balok.Artinya tidak seluruhnya berada terendam dalam cairan dengan perkataan lain benda mengapung. Agar benda melayang maka volume zat cair yang dipindahkan harus sama dengan volume balok dan rapat massa cairan sama dengan rapat rapat massa benda.
Jika rapat massa benda lebih besar daripada rapat massa fluida, maka benda akan mengalami gaya total ke bawah yang tidak sama dengan nol. Artinya benda akan jatuh tenggelam.
Berdasarkan Hukum Archimedes, sebuah benda yang tercelup ke dalam zat cair akan mengalami dua gaya, yaitu gaya gravitasi atau gaya berat (W) dan gaya ke atas (Fa) dari zat cair itu. Dalam hal ini ada tiga peristiwa yang berkaitan dengan besarnya kedua gaya tersebut yaitu seperti berikut.
• Tenggelam
Sebuah benda yang dicelupkan ke dalam zat cair akan tenggelam jika berat benda (w)
lebih besar dari gaya ke atas (Fa).
w > Fa
ρb X Vb X g > ρa X Va X g
ρb > ρa
Volume bagian benda yang tenggelam bergantung dari rapat massa zat cair (ρ)
• Melayang
Sebuah benda yang dicelupkan ke dalam zat cair akan melayang jika berat benda (w)
sama dengan gaya ke atas (Fa) atu benda tersebut tersebut dalam keadaan setimbang
w = Fa
ρb X Vb X g = ρa X Va X g
ρb = ρa
Pada 2 benda atau lebih yang melayang dalam zat cair akan berlaku :
(FA)tot = Wtot
rc . g (V1+V2+V3+V4+…..)  =  W1 + W2 + W3 + W4 +…..
• Terapung
Sebuah benda yang dicelupkan ke dalam zat cair akan terapung jika berat benda (w)
lebih kecil dari gaya ke atas (Fa).
w = Fa
ρb X Vb X g = ρa X Va X g
ρb < ρa
Misal : Sepotong gabus ditahan pada dasar bejana berisi zat cair, setelah dilepas, gabus
tersebut akan naik ke permukaan zat cair (terapung) karena :
FA > W
rc . Vb . g  >  rb . Vb . g
rc $rb
Selisih antara W dan FA disebut gaya naik (Fn).
Fn =  FA - W
Benda terapung tentunya dalam keadaan setimbang, sehingga berlaku :
FA’ = W
rc . Vb2 . g  =  rb . Vb . g
FA’ = Gaya ke atas yang dialami oleh bagian benda yang tercelup di dalam zat cair.
Vb1 = Volume benda yang berada dipermukaan zat cair.
Vb2 =    Volume benda yang tercelup di dalam zat cair.
Vb = Vb1 + Vb 2
FA’  =  rc . Vb2 . g
Berat (massa) benda terapung = berat (massa) zat cair yang dipindahkan
Daya apung (bouyancy) ada 3 macam, yaitu :
1. Daya apung positif (positive bouyancy) : bila suatu benda mengapung.
2. Daya apung negatif (negative bouyancy) : bila suatu benda tenggelam.
3. Daya apung netral (neutral bouyancy) : bila benda dapat melayang.
Bouyancy adalah suatu faktor yang sangat penting di dalam penyelaman. Selama
bergerak dalam air dengan scuba, penyelam harus mempertahankan posisi neutral
bouyancy.
Konsep Melayang, Tenggelam dan Terapung.
Kapankah suatu benda dapat terapung, tenggelam dan melayang ?
a. Benda dapat terapung bila massa jenis benda lebih besar dari massa jenis zat cair.
(miskonsepsi).
b. Benda dapat terapung bila massa jenis benda lebih kecil dari massa jenis zat cair.
(konsepsi ilmiah)
c. Benda dapat melayang bila massa jenis benda sama dengan massa jenis zat cair.
(konsepsi ilmiah)
d. Benda dapat tenggelam bila massa jenis benda lebih besar dari massa jenis zat cair.
(konsepsi ilmiah).
e. Terapung, melayang dan tenggelam dipengaruhi oleh volume benda. (miskonsepsi).
f. Terapung, melayang dan tenggelam dipengaruhi oleh berat dan massa benda
(miskonsepsi).
Tambahan
Mengapa Telur Tenggelam Dalam Air Biasa?
Pada saat telur tenggelam dalam air, berlakulah HUKUM ARCHIMEDES…”Benda yang dicelupkan sebagian atau seluruhnya akan mengalami gaya ke atas yang besarnya sama dengan berat zat cair yang dipindahkan.”
Mengapa Telur Tenggelam Dalam Air Biasa?  Sesuai dengan Hukum Archimedes mengenai prinsip TENGGELAM, maka telur tenggelam dalam air biasa disebabkan karena :
- W telur > Fa
(berat telur > gaya ke atas oleh air)
- S telur > S zat cair
(berat jenis telur > berat jenis zat cair)
dimana rumus berat jenis :
S = massa jenis x gravitasi
Supaya telur tersebut tidak tenggelam, kita dapat menambahkan garam pada air tersebut. Sehingga menyebabkan W telur < Fa dan S telur < S air.
Mengapa Kapal baja bisa mengapung di-Air, padahal BJ baja 7.85 tom/m3 dan BJ air 1 ton/m3?
Karena berat baja per luasannya masih lebih kecil dari air.
Sumber : http://sg.ard.yahoo.com/
Bagaimana Penerapan Hukum Archimedes ?
Pada kapal selam dimana kapal dapat melayang( tidak tenggelam tdak juga   mengapung). Karena F archimedes = F benda
F archmedes = V benda x massa jenis air x gravitasi.
sebagai percobaan ambil wadah bening di isi air putih lalu masukan 1 butir telur, yang terjadi telur akan tenggelam, lalu coba dalam wadah itu masukan garam.. hingga telur mengapung. ini dikarenakan perbedaan massa jenis air garam dengan benda.
karena massa jenis air laut umumnya sama maka berat kapal selam sudah didisain sedemikian rupa agar kapal bisa melayang.
Sumber : http://sg.ard.yahoo.com/
Mengapa Kapal Yang Berat Terapung tetapi batu yang kecil tenggelam?
Semua ini berkaitan dengan daya apungan, misalnya apabila kita mencampak sesuatu ke dalam air ia akan menolak & mengantikan kandungan air.
Misalnya apabila kita masukkan sebiji bola tenis ke dalam kolah, air sebanyak bola tennis akan melimpah keluar.
Jika berat air yang digantikan lebih berat daripada berat bola tennis, bola berkenaan akan terapung. Jika bola berkenaan dipenuhi dengan logam berbanding dengan udara, ia akan menjadi lebih berat daripada kandungan yang digantikan dengan air dan ia akan terapung.
Manusia yang menemui teori ini adalah ahli matematik Greek, Archimedes yang terkenal sebagai bapa apungan yang menemui teori itu semasa dalam kolah mandi.
Prinsip Archimedes menyatakan bahawa daya tujah ke atas yang bertindak pada sesuatu jasad yang tenggelam atau separa tenggelam adalah sama dengan berat cecair yang disesarkan oleh jasad tersebut.
Aplikasi daya tersebut dalam kehidupan harian adalah kapal laut, kapal selam dan belon udara. Sebuah kapal selam akan terapung pada permukaan lautan jika tanki keapungannya diisi dengan udara. Ini adalah kerana daya tujah ke atas bertindak pada kapal selam melebihi beratnya. Apabila tangki keapungannya diisi dengan air, kapal tersebut akan tenggelam dalam laut kerana daya tujah yang bertindak ke atasnya kurang daripada beratnya.
 
 

Contoh aplikasi dan penerapan hukum Archimedes

1. Teknologi perkapalan seperti Kapal laut dan kapal Selam
Teknologi perkapalan merupakan contoh hasil aplikasi ata penerapan hukum Archimedes yang paling sering kita jumpai dalam kehidupan sehari-hari.  Kapan laut terbuat dari besi atau kayu yang di buat berongga dibagian tengahnya. Rongga pada bagian tengah kapal laut ini bertujuan agar volume air laut yang dipindahkan badan kapal  besar. Aplikasi ini bedasarkan bunyi hukum Archimedes dimana gaya apung suatu benda sebanding dengan banyaknya air yang dipindahkan. Dengan menggunakan prinsip tersebut maka kapal laut bisa terapung dan tidak tenggelam.
Berbeda dengan kapal selam yang memang di kehendaki untuk bisa tenggelam di air dan juga mengapung di udara. Untuk itu pada bagian tertentu dari kapal selam di persiapkan sebuah rongga yang dapat menampung sejumlah air laut yang bisa di isi dan di buang sesuai kebutuhan. Saat ingin menyelam, rongga tersebut di isi dengan air laut sehingga berat kapal selam bertambah. Sedangkan saat ingin mengapung, air laut dalam rongga tersebut di keluarkan sehingga bobot kapal selam menjadi ringan dan mampu melayang di permukaan.
2. Alat pengukur massa jenis (Hidrometer)
Hidrometer adalah sebuah alat yang digunakan untuk mengukur massa jenis zat cair. Hidrometer merupakan contoh penerapan hukum Archimedes dalam kehidupan sehari-hari yang paling sederhana. Cara kerja hidrometer merupakan realisasi bunyi hukum archimede, dimana suatu benda yang dimasukan kedalam zat cair sebagian atau keseluruhan akan mengalami gaya keatas yang besarnya sama dengan berat zat cair yang dipindahkan.Jika hidrometer dicelupkan ke dalam zat cair, sebagian alat tersebut akan tenggelam. Makin besar massa jenis zat cair, Makin sedikit bagian hidrometer yang tenggelam. Seberapa banyak air yang dipindahkan oleh hidrometer akan tertera pada skala yang terdapat pada alat hidrometer.
3. Jembatan Poton
Jembatan poton adalah sebuah jembatan yang terbuat dari kumpulan drum-drum kosong yang melayang diatas air dan diatur sedemikian rupa sehingga menyerupai sebuah jembatan. Jembatan poton disebut juga jembatan apung. Untuk bisa di jadikan sebagai jembatan, drum-drum tersebut harus berada dalam kondisi kosong dan tertutup rapat sehingga udara di dalam drum tidak dapat keluar dan air tidak dapat masuk kedalam. Dengan cara itu berat jenis drum dapat diminimalkan sehingga bisa terapung di atas permukaan air
.
4. Teknologi Balon Udara
Balon udara adalah penerapan prinsip Archimedes di udara. Jadi ternyata aplikasi hukum Archinedes tidak hanya berlaku untuk benda cair tetapi juga benda gas. Untuk dapat terbang melayang di udara, balon udara harus diisi dengan gas yang bermassa jenis lebih kecil dari massa jenis udara atmosfer, sehingga, balon udara dapat terbang karena mendapat gaya keatas, misalnya diisi udara yang dipanaskan. Udara yang dipanaskan memiliki tingkat kerenggangan lebih besar daripada udara biasa. Sehingga masa jenis udara tersebut menjadi ringgan.
 
SUMBER: Wikipedia

TEORI ATOM

Sejarah Perkembangan Teori Atom Menurut Para Ahli

Sejarah Perkembangan Teori Atom Menurut Para Ahli - Perkembangan Teori atom Menurut para Ahli.

Pada awalnya gagasan tentang atom dikemukakan oleh Demokritus dan Leukipos. Mereka menganggap bahwa pembagian materi bersifat diskontinu, jika suatu materi dibagi dan dibagi lagi maka pada akhirnya akan diperoleh partikel terkecil yang tidak dapat dibagi lagi, partikel kecil tersebut disebut atom (a = tidak ; tomos = terbagi).

2000 tahun kemudian (1803) barulah John Dalton menempatkan konsep atom secara kokoh menjadi konsep pokok keilmuan kimia. Menurut Dalton:
  • Atom berupa bola yang amat kecil, tidak dapat dibelah, tidak dapat dimusnahkan dan tidak dapat diciptakan.
  • Atom merupakan bagian terkecil dari suatu unsur
  • Suatu unsur terdiri dari atom-atom yang identik
  • Atom-atom suatu unsur berbeda dengan atom-atom dari unsur lain
  • Dalam reaksi kimia, atom-atom tidak mengalami perubahan, yang berubah hanyalah susunan atom-atom.

Melalui teori atomnya Dalton dapat menjelaskan prilaku materi yang mengalami perubahan kimia ( Hukum dasar kimia ).

Hukum lavoiser ( Hukum kekekalan massa ) berbunyi:

”Pada reaksi kimia, massa zat sebelum dan setelah reaksi adalah sama”
Teori atom Dalton menjelaskan bahwa atom tidak dapat dimusnahkan atau diciptakan atau diubah menjadi atom lain. Dengan kata lain jenis dan jumlah atom sebelum dan sesudah reaksi sama (tidak ada perubahan massa)

Hukum Proust (Hukum Perbandingan Tetap) berbunyi:

“Dalam suatu senyawa perbandingan massa unsur-unsur penyusunnya selalu tetap“
Menurut Dalton senyawa terbentuk dari penggabungan atom-atom dengan perbandingan tertentu. Karena atom-atom suatu unsur identik maka jika perbandingan jumlah atomnya tertentu maka perbandingan massanya pun tertentu pula.
Pada perkembangan selanjutnya, ditemukan berbagai fakta yang tidak dapat dijelaskan oleh teori atom Dalton, seperti masalah sifat listrik dari materi, spektrum unsur, masalah pembentukan ikatan kimia dan lain-lain sebagainya.

Pada tahun 1897 ditemukanlah adanya elektron dalam atom oleh Joseph John Thomson melalui percobaannya yang menggunakan tabung pengawa muatan. Menurut Thomson:
  • Elektron merupakan komponen pokok penyusun materi
  • Semua atom mengandung elektron
  • Atom terdiri atas materi bermuatan positif dan elektron tersebar merata didalamnya. Secara keseluruhan atom bersifat netral.
Model atom Thomson ini disebut juga model ”plum-pudding” (roti kismis).
Kemudian pada tahun 1910 Ernest Rutherford bersama kedua orang asistennya, Hans Geiger dan Ernest Marsden, melakukan serangkaian percobaan untuk mengetahui lebih banyak tentang susunan atom. Mereka menembak lempeng logam tipis (emas) dengan partikel sinar alfa berenergi tinggi. Dari pecobaan mereka menemukan bahwa sebagian besar partikel alfa dapat menembus logam tanpa mengalami pembelokan yang berarti, sebagian kecil mengalami pembelokan yang cukup besar, dan beberapa diantaranya dipantulkan. Penemuan ini spontan menyebabkan gugurnya teori atom Thomson.

Dari penemuannya Rutherford berasumsi:
  • Atom terdiri dari inti yang bermuatan positif yang berada pada pusat atom. Massa atom terpusat pada inti.
  • elektron bergerak mengitari inti seperti halnya tata surya.
Akan tetapi teori atom Rutherford ini tidak sesuai dengan teori dinamika klasik yang menyatakan:

”Jika partikel bermuatan bergerak cepat maka partikel tersebut akan kehilangan energi dalam bentuk radiasi. Jadi, jika elektron bergerak mengelilingi inti, maka lama kelamaan elektron tersebut akan jatuh ke inti”.

Karena belum bisa mejelaskan kestabilan elektron mengelilingi inti atom mengakibatkan teori atom Rutherford belum diterima pada saat itu.

Selanjutnya teori atom Rutherford disempurnakan oleh Neils Bohr. Dengan menerapkan teori kuantum Planck, Bohr menerangkan spektrum atom Hidrogen. Menurut Bohr:
  • Elektron mengelilingi inti pada lintasan tertentu, yaitu lintasan yang memberikan momentum sudut sebesar , dimana h = tetapan Planck = 6,63 x 10-34J/s.
  • Energi elektron dalam lintasan berbanding lurus dengan jarak lintasan dari inti. Makin jauh lintasan dari inti, makin tinggi tingkat energi lintasan. Selama elektron berada pada lintasannya elektron tidak melepas dan menyerap energi.
  • Jika elektron menyerap energi maka elektron pindah ke lintasan yang tingkat energinya lebih tinggi. Dan jika elektron pindah dari lintasan dengan tingkat energi tinggi ke lintasan dengan tingkat energi rendah, maka elektron akan memancarkan energi dalam bentuk radiasi.
Teori atom Bohr ini menjadi penting karena telah dapat menggambarkan adanya tingkat tingkat energi dalam atom. Akan tetapi, teori atom Bohr tidak dapat menjelaskan spektrum atom berelektron banyak, efek Zeeman dan sifat keperiodikan unsur.

Untuk menerangkan kelemahan teori atom Bohr, maka lahirlah teori atom baru ”teori atom mekanika kuantum” yang ditopang oleh hipotesa De Broglie dan Azas ketidakpastian Heisenberg.

Hipotesa De Broglie berbunyi:
”elektron dalam atom dapat dipandang sebagai partikel dan sebagai gelombang”

Azas ketidakpastian Heisenberg berbunyi:
”tidak mungkin menentukan kecepatan sekaligus posisi yang pasti dari elektron dalam ruang, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti”

Daerah kebolehjadian menemukan elektron disebut orbital. Pada tahun 1926, Erwin Schrodinger berhasil merumuskan persamaan gelombang yang menggambarkan orbital, dimana setiap orbital mempunyai bentuk dan energi tertentu. Satu orbital dapat ditempati oleh maksimal 2 elektron.

Kedudukan elektron dalam atom dijelaskan oleh 4 bilangan kuantum:
1. bilangan kuantum utama (n) yang menyatakan tingkat energi
2. bilangan kuantum azimuth (l) yang menyatakan orbital
3. bilangan kuantum magnetik (m) yang menyatakan orientasi orbital dalam ruang
4. bilangan kuantum spin (s) yang menyatakan spin elektron.
 
SUMBER: Wikipedia

Jumat, 16 November 2012

MACAM - MACAM GAYA DALAM FISIKA

Macam-Macam Gaya dalam Fisika - Gaya merupakan dorongan atau tarikan yang akan mempercepat atau memperlambat gerak suatu benda. Pada kehidupan seharihari gaya yang Anda kenal biasanya adalah gaya langsung. Artinya, sesuatu yang memberi gaya berhubungan langsung dengan yang dikenai gaya. Selain gaya langsung, juga ada gaya tak langsung. Gaya tak langsung merupakan gaya yang bekerja di antara dua benda tetapi kedua benda tersebut tidak bersentuhan. Contoh gaya tak langsung adalah gaya gravitasi. Pada subbab ini Anda akan mempelajari beberapa macam gaya, antara lain, gaya berat, gaya normal, gaya gesekan, dan gaya sentripetal.

Macam-macam Gaya dalam Fisika

macam-macam gaya dalam fisika
1. Gaya Berat
Pada kehidupan sehari-hari, banyak orang yang salah mengartikan antara massa dengan berat. Misalnya, orang mengatakan “Doni memiliki berat 65 kg”. Pernyataan orang tersebut keliru karena sebenarnya yang dikatakan orang tersebut adalah massa Doni. Anda harus dapat membedakan antara massa dan berat. Massa merupakan ukuran banyaknya materi yang dikandung oleh suatu benda. Massa (m) suatu benda besarnya selalu tetap dimanapun benda tersebut berada, satuannya kg. Berat (w) merupakan gaya gravitasi
bumi yang bekerja pada suatu benda. Satuan berat adalah Newton (N). Hubungan antara massa dan berat dijelaskan dalam hukum II Newton. Misalnya, sebuah benda yang bermassa m dilepaskan dari ketinggian tertentu, maka benda tersebut akan jatuh ke bumi. Jika gaya hambatan udara diabaikan, maka gaya yang bekerja pada benda tersebut hanyalah gaya gravitasi (gaya berat benda). Benda tersebut akan mengalami gerak jatuh bebas dengan percepatan ke bawah sama dengan percepatan gravitasi. Jadi, gaya berat (w) yang dialami benda besarnya sama dengan perkalian antara massa (m) benda tersebut dengan percepatan gravitasi (g) di tempat itu. Secara matematis dapat ditulis sebagai berikut.
w = m × g

Keterangan :
2. Gaya Normal
Anda ketahui bahwa benda yang dilepaskan pada ketinggian tertentu akan jatuh bebas. Bagaimana jika benda tersebut di letakkan di atas meja, buku misalnya? Mengapa buku tersebut tidak jatuh? Gaya apa yang menahan buku tidak jatuh? Gaya yang menahan buku agar tidak jatuh adalah gaya tekan meja pada buku. Gaya ini ada karena permukaan buku bersentuhan dengan permukaan meja dan sering disebut gaya normal. Gaya normal (N) adalah gaya yang bekerja pada bidang yang bersentuhan antara dua permukaan benda, yang arahnya selalu tegak lurus dengan bidang sentuh. Jadi, pada buku terdapat dua gaya yang bekerja, yaitu gaya normal (N) yang berasal dari meja dan gaya berat (w). Kedua gaya tersebut besarnya sama tetapi berlawanan arah, sehingga membentuk keseimbangan pada buku.
Ingat, gaya normal selalu tegak lurus arahnya dengan bidang sentuh. Jika bidang sentuh antara dua benda adalah horizontal, maka arah gaya normalnya adalah vertikal. Jika bidang sentuhnya vertikal, maka arah gaya normalnya adalah horizontal.  Jika bidang sentuhya miring, maka gaya normalnya juga akan miring.

3. Gaya Gesekan
Jika Anda mendorong sebuah almari besar dengan gaya kecil, maka almari tersebut dapat dipastikan tidak akan bergerak (bergeser). Jika Anda mengelindingkan sebuah bola di lapangan rumput, maka setelah menempuh jarak tertentu bola tersebut pasti berhenti. Mengapa hal-hal tersebut dapat terjadi? Apa yang menyebabkan almari sulit di gerakkan dan bola berhenti setelah menempuh jarak tertentu?
Gaya yang melawan gaya yang Anda berikan ke almari atau gaya yang menghentikan gerak bola adalah gaya gesek. Gaya gesek adalah gaya yang bekerja antara dua permukaan benda yang saling bersentuhan. Arah gaya gesek berlawanan arah dengan kecenderungan arah gerak benda. Untuk benda yang bergerak di udara, gaya geseknya bergantung pada luas permukaan benda yang bersentuhan dengan udara. Makin besar luas bidang sentuh, makin besar gaya gesek udara pada benda tersebut sedangkan untuk benda padat yang bergerak di atas benda padat, gaya geseknya tidak tergantung luas bidang sentuhnya.
w : gaya berat (N)
sumber: wikipedia

TEORI TERBENTUKYA TATA SURYA

Teori-teori tentang proses terbentuknya tata surya dapat dikelompokan menjadi beberapa teori, yaitu sebagai berikut.


a. Teori nebula (Kant dan Laplace)

Teori Nebula pertama kali dikemukakan seorang filsuf Jerman bernama Imanuel Kant. Menurutnya, tata surya berasal dari nebula yaitu gas atau kabut tipis yang sangat luas dan bersuhu tinggi yang berputar sangat lambat. Perputaran yang lambat itu menyebabkan terbentuknya konsentrasi materi yang mempunyai berat jenis tinggi yang disebut inti massa di beberapa tempat yang berbeda. Inti massa yang terbesar terbentuk di tengah, sedangkan yang kecil terbentuk di sekitarnya Karena terjadi proses pendinginan, inti-inti massa yang lebih kecil berubah menjadi planet-planet, sedangkan yang paling besar masih tetap dalam keadaan pijar dan bersuhu tinggi yang disebut matahari.

Teori nebula lainnya dikemukakan oleh Pierre Simon Laplace. Menurut Laplace, tata surya berasal dari bola gas yang bersuhu tinggi dan berputar sangat cepat. Karena perputaran yang sangat cepat, sehingga terlepaslah bagian-bagian dari bola gas tersebut dalam ukuran dan jangka waktu yang berbeda-beda. Bagian-bagian yang terlepas itu berputar dan akhirnya mendingin membentuk planet-planet, sedangkan bola gas asal dinamakan matahari.



Gambar 3.2 Pembentukan tata surya menurut teori nebula 
(Sumber: Moh. Ma'mur Tanudidjaja, halaman 98)


b. Teori planetesimal (Moulton dan Chamberlain)

Moulton dan Chamberlain, berpendapat bahwa tata surya berasal dari adanya bahan-bahan padat kecil yang disebut planetesimal yang mengelilingi inti yang berwujud gas bersuhu tinggi. Gabungan bahan-bahan padat kecil itu kemudian membentuk planet-planet, sedangkan inti massa yang bersifat gas dan bersuhu tinggi membentuk matahari.



Gambar 3.3 Pembentukan tata surya menurut teori planetesimal 
(Sumber: Moh. Ma'mur Tanudidjaja, halaman 99)




c. Teori pasang surut (Jeans dan Jeffreys)

Astronom Jeans dan Jeffreys, mengemukakan pendapat bahwa tata surya pada awalnya hanya matahari saja tanpa mempunyai anggota. Planet-planet dan anggota lainnya terbentuk karena adanya bagian dari matahari yang tertarik dan terlepas oleh pengaruh gravitasi bintang yang melintas ke dekat matahari. Bagian yang terlepas itu berbentuk seperti cerutu panjang (bagian tengah besar dan kedua ujungnya mengecil) yang terus berputar mengelilingi matahari, sehingga lama kelamaan mendingin membentuk bulatan-bulatan yang disebut planet.



Gambar 3.4 Pembentukan tata surya menurut teori pasang surut 
(Sumber: Moh. Ma'mur Tanudidjaja, halaman 100)


d. Teori bintang kembar (Lyttleton)

Teori bintang kembar dikemukakan astronom Inggris bernama Lyttleton. Teori ini menyatakan bahwa pada awalnya matahari merupakan bintang kembar yang satu dengan lainnya saling mengelilingi, pada suatu masa melintas bintang lainnya dan menabrak salah satu bintang kembar itu dan menghancurkannya menjadi bagian-bagian kecil yang terus berputar dan mendingin menjadi planet-planet yang mengelilingi bintang yang tidak hancur, yaitu matahari.



Gambar 3.5 Pembentukan tata surya menurut teori bintang kembar 
(Sumber: Moh. Ma'mur Tanudidjaja, halaman 98)


e. Teori awan debu (Weizsaecker dan Kuiper)

Weizsaecker dan Kuiper, berpendapat bahwa tata surya berasal dari awan yang sangat luas yang terdiri atas debu dan gas (hidrogen dan helium). Ketidakteraturan dalam awan tersebut menyebabkan terjadinya penyusutan karena gaya tarik menarik dan gerakan berputar yang sangat cepat dan teratur, sehingga terbentuklah piringan seperti cakram. Inti cakram yang menggelembung menjadi matahari, sedangkan bagian pinggirnya berubah menjadi planet-planet.

Ahli astronomi lainnya yang mengemukakan teori awan debu antara lain, F.L Whippel dari Amerika Serikat dan Hannes Alven dari Swedia. Menurutnya, tata surya berawal dari matahari yang berputar dengan cepat dengan piringan gas di sekelingnya yang kemudian membentuk planet-planet yang beredar mengelilingi matahari.

SISTEM TATA SURYA DENGAN MATAHARI KEMBAR DI TEMUKAN

Para astronom untuk pertama kalinya menemukan dua planet asing yang mengelilingi dua bintang: sebuah sistem tata surya yang lengkap dengan matahari kembar seperti dunia fiksi Luke Skywalker, Tatooine.



Kebanyakan bintang seperti Matahari tidaklah tunggal, namun ada sepasang yang mengorbit satu sama lain. Para ilmuwan menemukan planet-planet dalam sistem biner tersebut, yang disebut circumbinary (planet yang mengelilingi dua bintang) dengan dua matahari seperti Tatooine di “Star Wars.”

Untuk menemukan lebih banyak planet circumbinary, astronom menganalisa data dari teleskop ruang angkasa Kepler milik NASA, yang telah mendeteksi lebih dari 2.300 planet asing potensial sejak Maret 2009. Kepler sampai saat ini sudah mendeteksi empat sistem tata surya dengan planet circumbinary — Kepler-16, 34, 35 dan 38.

Para ilmuwan sekarang telah mengumumkan deteksi sistem Kepler-47, sistem tata surya pertama yang terlihat dengan planet yang mengelilingi sepasang bintang. Bintang dan planetnya, yang disebut Kepler-47b dan Kepler-47c, berada pada jarak sekitar 5.000 tahun cahaya, di konstelasi Cygnus, sang Angsa.

"Kepler-47 menunjukkan kepada kita bahwa bintang biner dapat memiliki sistem planet yang berkumpul, seperti yang kita lihat pada bintang tunggal," ujar pemimpin penelitian Jerome Orosz di San Diego State University kepada SPACE.com. "Sebagian besar bintang-bintang di galaksi itu biner atau dalam sistem berganda yang lebih banyak lagi, sehingga fakta bahwa sistem planet tersebut dapat muncul dalam sistem jenis itu sangat penting. Jika kita hanya membatasi mencari planet di sekitar bintang tunggal, kita akan melewatkan sebagian besar bintang di galaksi."

Menemukan sistem tata surya "Tatooine"
Planet-planet tersebut terlalu jauh untuk dilihat dengan mata telanjang. Sebaliknya, keduanya ditemukan karena keredupan cahaya bintang mereka ketika melintasi, atau transit, di depan bintang itu.

Peredupan itu kecil, hanya 0,08 persen untuk planet Kepler-47b dan 0,2 persen untuk planet Kepler-47C. Sebagai perbandingan, Venus menghalangi sekitar 0,1 persen permukaan matahari saat transitnya baru-baru ini. Data dari Kepler memungkinkan peneliti untuk menyimpulkan ukuran relatif dari obyek dan orbitnya. Mereka juga mengandalkan pengamatan lebih lanjut yang dilakukan oleh teleskop di Observatorium McDonald di West Texas.



Salah satu dari bintang tersebut mirip dengan matahari kita, dan yang lainnya berukuran sepertiga lebih kecil dan 175 kali lebih redup. Planet dalam berukuran 3 kali diameter Bumi, sedangkan planet luarnya berukuran 4,6 kali diameter Bumi — planet yang lebih kecil adalah planet circumbinary terkecil yang pernah terlihat.

Planet dalamnya selesai memutari orbit setiap 49,5 hari, sedangkan yang luar membutuhkan waktu 303,2 hari, membuatnya menjadi orbit terbesar untuk transit planet di luar sistem tata surya yang pernah diketahui. Bintang-bintang itu sendiri berputar mengelilingi satu sama lain setiap 7,5 hari.

Para ilmuwan menerbitkan temuan mereka secara online pada 28 Agustus di jurnal “Science”. Mereka juga akan mengungkapkan hasil detail pada 29 Agustus di General Assembly of the International Astronomical Union di Beijing.

Planet di zona layak huni?
Menariknya, planet terluar berada di zona layak huni sistem tersebut, dengan planet berbatu seperti Bumi yang berada di suhu yang tepat untuk memiliki air cair di permukaannya.

"Kami telah mengetahui bahwa planet circumbinary bisa seperti planet-planet di sistem tata surya kita, tapi dengan dua matahari," kata salah satu penulis studi Joshua Carter di Harvard-Smithsonian Center for Astrophysics.

Meskipun planet luar mungkin adalah sebuah gas raksasa yang sedikit lebih besar daripada Uranus dan oleh karena itu tidak cocok untuk kehidupan, temuan tersebut menunjukkan bahwa planet circumbinary dapat dan memang ada di zona layak huni.

"Hal yang saya anggap paling menarik adalah potensi untuk dapat ditinggali dalam sistem circumbinary tersebut," kata penulis studi William Welsh di San Diego State University. "Kepler-47C tidak mungkin dapat memiliki kehidupan, tetapi jika planet itu memiliki bulan yang besar, maka planet itu akan menjadi dunia yang sangat menarik."

Cuaca aneh di planet Tatooine

Planet circumbinary mungkin mengalami perubahan iklim yang ekstrem.

Di Bumi, matahari adalah sumber cahaya yang relatif stabil, dengan energi matahari yang kita terima (insolation) hanya bervariasi sebesar 0,1 persen atau lebih. "Akibatnya, kita tidak perlu khawatir tentang apa yang matahari lakukan, setidaknya dalam skala waktu beberapa tahun hingga beberapa dekade," kata Orosz. "Untuk sebuah planet dalam sebuah sistem biner, mungkin terdapat perubahan dalam insolation sebesar beberapa persen dalam skala waktu beberapa hari hingga beberapa pekan. Selain itu, jika sumbu rotasi planet miring, maka itu juga akan berpengaruh. Oleh karena itu musim sangat cepat berubah dan rumit."

"Juga, katakanlah demi tujuan diskusi kalau periode rotasi planet itu adalah 24 jam, seperti Bumi," tambahnya. "Karena Anda memiliki dua matahari, bukan satu, Anda dapat melihat siang hari lebih dari 12 jam, tergantung pada posisi bintang-bintang saat matahari terbit atau terbenam."

Selain itu, karena teleskop ruang angkasa Kepler menemukan bahwa semua planet circumbinary memiliki orbit yang berkaitan erat dengan orbit yang dimiliki bintang mereka satu sama lain, "Anda akan sering melihat gerhana matahari," kata Orosz. "Dalam kasus Kepler-47, ketika bintang sekunder lewat di depan bintang primer, jumlah total cahaya turun sebesar 15 persen. Hal tersebut akan terjadi setiap 7,5 hari atau lebih."

Sistem tata surya yang lebih eksotis
Penemuan terbaru tersebut menunjukkan bahwa sistem planet dapat terbentuk dan bertahan bahkan dalam lingkungan kacau di sekitar bintang biner.

Para peneliti memperkirakan bahwa planet-planet di Kepler-47 berasal lebih jauh daripada orbit mereka saat ini, di lokasi di mana kondisi untuk pembentukan planet raksasa lebih memungkinkan. Mereka kemudian akhirnya bermigrasi ke dalam karena interaksi dengan cakram gas dan debu yang juga mengelilingi bintang itu.

"Kami rasa planet-planet tersebut dan sebagian besar planet-planet lain terbentuk dari cakram puing-puing yang tersisa dari proses pembentukan bintang," kata Orosz. "Belum jelas bahwa cakram ini bisa bertahan di dekat sebuah bintang biner yang baru terbentuk, mengingat gerakan orbital dari dua bintang. Namun, sekarang tampak bahwa terlepas dari perbedaan-perbedaan kecil dalam jarak orbital, sistem planet di sekitar bintang biner dapat mirip dengan sistem planet di sekitar bintang tunggal. "

Di masa depan, para peneliti ingin mencari planet-planet asing yang lebih kecil di sekitar bintang-bintang biner.

"Kemampuan kami terbatas pada pencarian visual yang sederhana, sehingga kami perlu perangkat lunak yang lebih baik untuk membantu untuk mengotomatiskan proses," kata Orosz. "Kalau ada lebih banyak waktu dan data, saya kira kita dapat menemukan lebih banyak sistem planet circumbinary dalam data Kepler."

 Oleh Charles Q. Choi | SPACE.com

MACAM- MACAM BENTUK GALAKSI

Galaksi merupakan sebuah sistem yang terikat oleh gaya gravitasi yang terdiri atas bintang-bintang(dengan segala bentuk manifestasinya, antara lain bintang neutron dan lubang hitam), gas + debu kosmik medium antarbintang, dan kemungkinan substansi hipotetis yang dikenal dengan materi gelap. Asal mula kata galaksi berasal dari bahasa yunani yaitu galaxias yang berarti susu. Kata galaxias saat itu cenderung mengacu dengan galaksi kita yaitu galaksi bimasakti. Galaksi terdiri dari ratusan bintang (baik bintang ganda maupun bintang tunggal), Cluster, nebula, planet dan medium antar bintang. Matahari yang merupakan salah satu bintang yang mengelilingi galaksi nya sendiri berdasarkan garis edarnya. Galaksi berdasarkan bentuk nya dibedakan atas tiga jenis utama yaitu Galaksi elliptikal, Galaksi spiral, dan Galaksi tak beraturan.
Jenis galaksi Eliptikal adalah jenis galaksi yang diperkirakan mempunyai bentuk ellipsoidal dan terlihat lembut karena terang nya cahaya antar bintang, hampir keseluruhan bentuk fisik nya rata dan terang. Morfologi dari galaksi eliptikal ternyata sangat bermacam-macam mulai dari yang berbentuk hampir bulat seperti eplisoidal hingga hampir berbentuk datar. Dengan beraneka macam nya bentuk yang ada, hal ini ternyata sangat mempengaruhi jumlah dari banyak nya bintang yang ada didalam sebuah galaksi. Mulai dari ratusan juta bintang hingga lebih dari satu trilyun bintang. Klasifikasi morfologi eliptikal ini telah diklasifikasikan oleh Edwin Hubble dalam skema klasifikasi Hubble. Contoh dari jenis Eliptikal galaksi adalah M32, M49 dan M59.

Klasifikasi Skema Hubble pada Galaksi Eliptikal
Jenis Galaksi Spiral adalah jenis galaksi yang terdiri atas pusaran bintang dan medium antar bintang dimana pada garis tengah nya atau pusat galaksi terdiri dari bintang bintang yang berumur sangat tua. Dilihat dari bentuk nya, galaksi berjenis spiral mempunyai lengan yang cerah disetiap sisinya. Dalam klasifikasi skema hubble jenis spiral galaksi diberi daftar dengan kode S(Spiral) dan SB (Barred Spiral) tergantung dengan bentuk lengan nya kemudian diikuti huruf abjad yang mengindikasikan tingkat kerapatan antar lengan spiral dan tonjolan pada pusat galaksi. Seperti hal nya sebuah bintang beserta planet-planet nya, lengan spiral galaksi selalu memutari pusat dari galaksi dengan kecepatan relatif konstan meskipun waktu yang dibutuhkan untuk mengelilingi nya sangat lama. Lengan spiral merupakan daerah pada bagian galaksi yang paling padat materi atau sering disebut “Densiy Waves”. Dibagian inilah grafitasi antar bintang mulai merapat sehingga semakin nampak lengan spiral dari sebuah galaksi maka semakin banyak pula jumlah bintang-bintang dan dibagian inilah tempat dilahirkannya bintang-bintang muda. Contoh dari Galaksi jenis spiral adalah M31 (andromeda), M33 (triangulum) dan M51 (Whirlpool)

Klasifikasi Hubble pada Galaksi Spiral dan Barred Spiral
Jenis galaksi tak beraturan. Jenis galaksi tak beraturan yang dimaksud adalah jenis galaksi yang bentuk nya bukan eliptikal maupun spiral. Pada jenis galaksi ini bentuk dari galaksi sangat bermacam-macam ada yang disebut “Dwarf” Galaksi atau galaksi cebol yang dikarenakan besar galaksi ini lebih kecil dari galaksi pada umumnya, Ring Galaksi yaitu galaksi yang bentuk nya seperti cincin yang mana ditengahnya ada pusat dari galaksi dan Lentikular galaksi dimana Bentuk dari galaksi ini merupakan perpaduan antara jenis Eliptikal dan Spiral. Contoh dari jenis Dwarf Galaksi adalah M110, Ring Galaksi adalah Objek Hoag dan Lentikular galaksi adalah NGC 5866.HG
(Referensi: en.wikipedia.org)

Contoh Jenis Galaksi Eliptikal

Contoh Jenis Galaksi Spiral dan Barred Spiral